

 $\max_{(\cos \varphi = 0, 9_{md})}$

Rys.1 Charakterystyka sterowania mocą bierną funkcji napięcia wymagana przez OSD.

KENO Sp. z o.o. ul. Daszyńskiego 609 44-151 Gliwice +48 32 230 25 71

☑ biuro@keno-energy.com

www.keno-energy.com

1. Na swoim koncie Fusionsolar wyszukujemy instalację na które będzie ustawiona kompensacja mocy biernej celem ograniczenia napięć w sieci.

2. Na instalacji przechodzimy do zakładki Urządzenia

3. Zaznaczamy okno falownika następnie przechodzimy do Ustaw parametry

		Status komunikacji	Nazwa urządzenia	Typ urządzenia	Wersja oprogramowania	Data ważności <u>c</u>
\square	~	+		Falownik w łańcuchu	V100R001C00SPC140	- / - / -

Ustaw parametry

4. Regulacja mocy → Regulacja krzywej mocy biernej

5. Nastawa parametrów zgodnie z poniższą tabelą :

Krzywa charaktoryctyki O LI (trub wanéleu)	
KIZYWA CNARAKTERYSTYKI Q-U (TRYD WSPOINY)	``
Liczba punktów krzywej charakterystyki Q-U:	
6	
Wartość U/Un pierwszego punktu krzywei Q-U (%):
85.0	
Wartość O/S dla pierwszego punktu krzywei O-U	J:
0.436	
Wartość U/Un drugiego punktu krzywej Q-U (%)	:
92.0	
Wartość Q/S dla drugiego punktu krzywej Q-U:	
0.436	
94.0	
Wartaść O/S dla trzeciana puplitu krzywaj O Llu	
	0.
106.0	0):
Wartość Q/S dla czwartego punktu krzywej Q-U:	
0.000	
Wartość U/Un piątego punktu krzywej Q-U (%):	
108.0	
Wartość Q/S dla piątego punktu krzywej Q-U:	
-0.436	
Wartość U/Un szóstego punktu krzywej Q-U (%)	:
110.0	
Wartość Q/S dla szóstego punktu krzywej Q-U:	
0.426	

6. Po ustawieniu zapisujemy

PE-

3.300		Zakres wartości parametru[0.100~3.30(
Podstawowa wartość od 3.300	dniesienia mocy pozornej (kVA):	Zakres wartości parametru[3.300~3.300
		Ustaw Aktualizuj Anuluj
EN 🛞	KENO Sp. z o.o. ul. Daszyńskiego 609 44-151 Gliwice	 □ +48 32 230 25 71 □ biuro@keno-energy.com ⊕ www.keno-energy.com

Po ustawieniu kompensacji mocy biernej jej nastawę możemy zweryfikować przechodząc ponownie do widoku naszej instalacji i wchodząc w ikonę falownika :

Przepływ energii

Nastwiony harmonogram pracy:

Suncash	unhière melacione (a)
PV1	325.7
PV2	0.0

Stan falownika	Ustalanie harmonogramu sieci elektro	• 1
Moc czynna	0.787 kW	• 1
Współczynnik mocy	0.999	• (
Data wyłączenia falownika	2022-03-17 17:33:17	• 1

Po zmianie języka :

PV1	325.7
PV2	0.0

Inverter status	Power grid scheduling: Q-U characteri	Yield to
Active power	0.787 kW	Reactive
Power factor	0.999	 Grid fre
Inverter shutdown time	2022-03-17 17:33:17	Output

KENO Sp. z o.o. ul. Daszyńskiego 609 44-151 Gliwice +48 32 230 25 71

biuro@keno-energy.com

>

www.keno-energy.com